Журнал «Аддитивные технологии»

Аддитивные технологии в строительстве: оборудование и материалы (часть 1)

Cтроительная промышленность, возможно, стоит перед самым большим выбором будущих направлений развития. Традиционные методы строительства не смогут решить возникающие задачи и проблемы. Требуются новые подходы к строительству жилья и инфраструктуры жилых районов.

«Способ строительства жилья не изменялся последние 10 тысяч лет — самые старые постройки также используют столбы и балки. Но это далеко от того, что реально существует в природе»,  — считает Платт Бойд (Platt Boyd), основатель проекта Branch Technology (США).

Сегодня строительная промышленность, возможно, стоит перед самым большим выбором будущих направлений развития. Основные причины — демографические изменения (к 2100 г. население планеты достигнет 11 млрд жителей) и растущая глобальная урбанизация (на 2017 г. половина населения живет в городах, к 2050 г. число горожан достигнет 75 %). Традиционные методы строительства не смогут решить возникающие задачи и проблемы. Поэтому требуются новые подходы к строительству жилья и инфраструктуры жилых районов.

Широкое обсуждение аддитивных технологий в последние несколько лет привело к появлению различных приложений АМ (аддитивного производства) в строительстве. Появилось немало разработчиков таких приложений и проектов с их использованием по всему миру. В их числе как энтузиасты-одиночки, так и большие команды, включающие архитекторов, строителей, инвесторов, университеты и крупные производственные компании.

Объем мирового строительного рынка огромен (табл. 1). При этом рынки развивающихся стран показывают темп развития 5,3 %, рынки развитых стран — 2,2 % в год. Наиболее привлекательные регионы для строительства — Ближний Восток и Африка, Южная Америка. Строительство сегодня является одной из самых ресурсозатратных отраслей производства. Оно расходует 36 % энергии, 30 % сырьевых материалов, 12 % питьевой воды (на примере США). В то же время строительство имеет крайне неэффективную низкую производительность даже в таких странах, как США, Великобритания, Сингапур и Гонконг.

Таблица 1. Объем мирового строительного рынка

Год Трлн долларов Средний темп роста, % в год
2010 7,4 3,1
2015 8,5 3,8
2020 10,3 3,9

Посмотрим, как новые технологии и новые материалы для них способны кардинально изменить ситуацию. Будем рассматривать только те технологии, которые можно отнести к аддитивным (АМ).

Технологии 3D-печати в строительстве

Сущность 3D-печати строительных конструкций заключается в послойном отвердении строительной смеси по 3D-модели, подготовленной методом компьютерного 3D-моделирования (рис. 1).

Рис. 1. Портальный принтер в работе (S-6044 Long компании «Спецавиа»)

Модель в формате STL или SLC разбивается на слои программой подготовки рабочего файла, который затем отправляется на 3D-принтер для печати. Печатающая головка принтера, двигаясь вдоль направлений X и Y, печатает рисунок сечения модели строительной смесью, например, бетоном, гипсом или каолиновыми смесями. При завершении слоя головка поднимается вдоль направления Z на толщину нового слоя, печатает новый слой, и так до завершения построения изделия.

Печатающая головка конструктивно состоит из бункера (накопителя) с мешалкой, шнекового экструдера (не исключено применение других видов, в том числе и роторного), который формирует необходимый слой бетона (рис. 2). Во время печати можно оперативно корректировать геометрию выдавливаемого слоя, изменять скорость печати, добиваясь максимального качества.

Рис. 2. Печатная головка принтера

Все исходные компоненты смешиваются в подобранном соотношении в растворных мешалках или специальных станциях до получения однородной массы. Затем полученная смесь подается в печатающую головку 3D-принтера. Вес замеса от 10 до 100 кг. Подача готового раствора в головку может производиться в ручном режиме и автоматически. Рабочая смесь может замешиваться непосредственно в печатающей головке, что актуально для быстрой печати или для печати с нависаниями с использованием быстротвердеющих составов.

Армировать изделия можно следующими способами: добавлять в бетонную смесь фиброволокно, укладывать арматуру между слоями во время печати, армировать полости изделий с последующей заливкой этих полостей бетоном. Для армирования лекальных полостей идеально подходит композитная арматура, что значительно уменьшает себестоимость строительства.

После завершения печати печатающая головка извлекается из 3D-принтера и очищается мойкой высокого давления. Сформированное небольшое по размерам изделие остается на поддоне и может сушиться в естественных условиях либо подвергаться нагреву до набора прочности при более высоких температурах. При печати каолиновыми смесями с использованием глины и шамота предполагается последующий обжиг изделий. При печати непосредственно на строительной площадке фундамента или стен следует выдерживать необходимые сроки, чтобы бетон набрал нужную прочность.

С помощью 3D-печати могут быть изготовлены строительные конструкции и другие бетонные и гипсовые изделия сложной геометрии. При этом значительно сокращается время цикла от проектирования до производства (примерно в 8–12 раз), происходит экономия средств и времени за счет отсутствия опалубки, которую обычно приходится изготавливать заранее под каждую конкретную строительную конструкцию.

В зависимости от конструкции строительные 3D-принтеры можно разделить на следующие типы:

1. Портальные — в которых печатающая головка перемещается по направляющим в пределах рабочей зоны, ограниченной по площади (X, Y координаты) опорами и по высоте (Z) — расстоянием до головки при ее максимальном подъеме. Пример — принтеры компаний Winsun (Китай) и ООО «Спецавиа» (АМТ — резидент Сколково, Россия) — рис. 3, 1 соответственно.

Рис. 3 Портальный 3D-принтер компании Winsun (Китай)

2. Разновидность портальных принтеров с так называемым Дельта-приводом головки. Идея нашла широкое применение в пластиковых 3D-принтерах, работающих по технологии FDM. Пример — принтеры компании WASP (Италия) — рис. 4.

Рис. 4. Образец структуры из биополимера (FILOALFA), который печатается с головкой SPITFIRE на 3D-принтере дельта типа

3. Мобильные 3D-принтеры, когда 3D-принтер оснащен рукой-роботом и установлен на шасси, которое может перемещаться самостоятельно или с помощью крана (рис. 5).

Рис. 5. Роботизированный комплекс на шасси компании Branch Technology, США

4. Роботизированные комплексы: оснащены рукой-роботом Kuka, ABB и других производителей. Робот может перемещаться в пределах рабочей зоны по направляющим рельсам (рис. 6). При этом зона застройки практически не ограничена.

Рис. 6. Роботизированный комплекс с перемещением по рельсам компании Branch Technology, США

5. Гибридные конструкции:

  •   комбинация портального 3D-принтера и робота (компания Contour crafting corporation (CCC), рис. 7)
  •  управление печатающей головкой (с использованием полярных координат) и перемещением по высоте происходит за счет использования телескопического устройства (рис. 8, компания Apis Сor).

Рис. 7. Роботизированный комплекс, оснащенный печатной головкой и манипулятором для укладки элементов дома (компания ССС, США)

Рис. 8. 3D-принтер компании Apis Сor с телескопическим устройством

6. Комплекс для печати сетчатых структур — рука-робот для подачи металла (рис. 5) или пластика (рис. 6).

7. 3D-принтеры большого формата для печати элементов декора, оформления фасадов, входных групп, окон и элементов интерьера, работающие по технологии FDM с использованием широкого круга термопластиков (Россия, ООО «Спецавиа»).

Первые теоретические разработки по использованию роботов в строительной отрасли появились под руководством профессора университета Южной Калифорнии в США Behrokh Khoshnevis еще в 1996 г. Его команда в дальнейшем представила три новые технологии под названием Contour crafting (CC).

Преимущества их применения очевидны — наряду со снижением в 5 раз затрат на коммерческое строительство, отсутствием отходов стройматериалов, сокращением времени изготовления акцент по затратам переносится с физической работы на интеллектуальную (табл. 2). А это означает, что строительство становится рынком для потребителей, когда семья может сама проектировать будущий дом для проживания. А также взять в лизинг оборудование СС в ближайшем магазине стройматериалов и в соответствии с инструкцией построить свой дом. Более того, впервые в строительной отрасли можно привлекать труд женщин и пожилых людей для участия в конструировании. В настоящее время СС-технологии могут использоваться для строительства малобюджетного жилья и временного жилья для пострадавших и спасателей в зонах стихийных бедствий и военных конфликтов.

Таблица 2.

Стоимость в % от традиционного строительства Основной вклад С применением технологий CC
20—25% Финансирование Короткая продолжительность проекта с быстрым выходом на рынок резко снижают стоимость проекта
25—30% Материалы Отсутствие отходов при строительстве
45—55% Работа Существенно снижен ручной труд. Физическая работа заменена интеллектуальной. Женщины и пожилые работники могут впервые найти новые возможности по работе в строительстве

В начале 2018 года компания Contour Crafting Corporation планировала выпустить первую серию роботизированных 3D-принтеров для строительной индустрии. Серийное оборудование имеет рабочую зону 8×13 м и может быть увеличено по запросу заказчика. Вес комплекса менее 300 кг, что значительно легче традиционных строительных машин. Оборудование может быть доставлено заказчику и на строительную площадку обычным грузовиком, причем при необходимости в стандартный морской контейнер помещается несколько комплексов. Два подготовленных специалиста могут контролировать процесс строительства.

Технология сетчатых металлических форм — МММ (Mesh Mold Metal)

Платт Бойд — основатель проекта Branch Technology, предложил создавать сетчатые структуры с помощью роботизированного комплекса (рис. 6). Комплекс представляет собой робот KUKA на платформе, которая может перемещаться по направляющим рельсам длиной 10 м и печатать из ABS-пластика стены для выставочного стенда компании. Начав опыты с роботом с рабочей зоной 1,3×1,3×1,0 м, сейчас компания использует робот KR90 и способна строить структуры с размерами 8,25×19,1×2,1 м в объеме 324 куб. м.

Платт в течение 15 лет работал в архитектурном бюро в Алабаме и уже тогда начал интересоваться более естественной формой строительства. Он даже стал собирать коллекцию изображений природных форм под названием Beautiful and Amazing Collection (рис. 9) и использовать их в архитектурных проектах. Пример жилого комплекса (рис. 10) показывает одно из решений. Дом разделен на две зоны – дневную и ночную с двумя огромными окнами в торцах и промежуточной подсветкой посередине.

Рис. 9. Фото из коллекции Beautiful and Amazing Collection

Рис. 10. Пример жилого комплекса

В 2013 г. он пришел к пониманию того, что нужно использовать не одни только послойные технологии выращивания объектов, а, как и в природе, требуется симбиоз различных решений, технологий строительства. Первое открытие он сделал на выставке того же года, когда не нашел ни одного решения использования роботов для печати стен. Другое открытие касалось возможности архитекторов создавать любые формы для элементов здания. Более того, он убедился, что сетчатые структуры панелей более прочны в сравнении, например, с традиционными деревянными панелями уже при добавлении только пены (примерно на 30 %), а при нанесении бетона на внешнюю поверхность панели ее прочность аналогична прочности цельной бетонной стены такого же размера (рис. 11, 12). При этом панели очень легкие. Так, пластиковая стена весом 0,7 кг выдерживает нагрузку в 700 кг, а пластиковая стена весом 1,1 кг с нанесенной пеной — вдвое выше: 1400 кг.

Рис. 11. Устройство сетчатой структуры стены

Рис. 12. Сетчатая структура с пеной выдерживает значительную нагрузку

Какой видится перспектива метода компании Branch Technology? 3D-печать рассматривается только как основа для создания сетчатых структур-матриц для стен зданий с любой сложной геометрией. Далее могут использоваться традиционные строительные материалы: для внутренней отделки — пена и гипсокартон; на внешней поверхности применяется бетон и далее любые отделочные материалы (кирпич, штукатурка и т. д.). Для реализации этой идеи планируется создать производство крупноразмерных отдельных элементов стен по запросам клиентов со всего мира и далее доставлять их заказчикам. А уже на месте из этих элементов собирается готовый объект с использованием традиционных технологий и материалов. Мнение Платта о возможности использования робота на строительной площадке однозначно: «Пока высокотехнологичное производство недостаточно надежно, чтобы выжить на открытом воздухе». Один из важнейших моментов: получение международных строительных сертификатов и использование технологии в строительстве — процесс долгий. Поэтому пока компания объявила конкурс на дизайн зданий, которые будут строиться методом сотовой сборки.

На конференции «Цифровое производство из бетона» (ETH) в Цюрихе (май 2017 г.) группа авторов (Nitish Kumar, Norman Hack, Kathrin Doerfler и др.) представила доклад «Проектирование, разработка и экспериментальная оценка применения роботизированного комплекса в нестандартном строительстве». В нем описывается технология роботизированного производства стальных сетчатых структур произвольной формы с разными размерами ячеек, которые могут быть использованы как арматура и как опалубка (рис. 13). Технология получила наименование Mesh Mold Metal (MMM) — сетчатая металлическая форма. Она позволяет интегрировать арматуру в конструкцию естественным образом, в то же время решается проблема появления так называемых холодных стыков. Так как бетон заливается одновременно, условия гидратации будут одинаковы для всей конструкции.

Рис. 13. Пример сетчатой структуры с различной кривизной по разным направлениям для последующего заполнения бетоном без опалубки и головка робота для ее создания

Размер ячеек сетки, их плотность и расстояние между соседними поверхностями структуры определяются из тех соображений, что свежий бетон должен заполнять весь объем структуры, но при этом не выходить наружу через боковые ячейки. Опытным путем было установлено, что оптимальный размер ячейки для проволоки размером до 4 мм составляет 10–15 мм. Для повышения производительности нужно увеличить диаметр проволоки до 6 мм, соответственно, будет увеличен и размер ячеек. Пример готовой структуры, залитой бетоном, показан на рис. 14.

Рис. 14. Пример сетчатой структуры, заполненной бетоном с ручной финишной отделкой

В 2018 г. планируется построить пилотный демонстрационный проект размерами 13 м в длину и 3 м в высоту. Это будет реальная стена будущего двухэтажного дома. Концепция сочетает в себе мобильность, гибкость, автономность, модульное построение, построение объекта в заводских условиях (рис. 15).

Рис. 15. Использование роботов для построения сложных пространственных структур

В другой работе, представленной на той же конференции в Цюрихе, автор К. Менна из университета Неаполя изложил некоторые принципиальные положения, которые необходимо рассматривать при использовании АМ-технологий в строительстве.

В частности, он запатентовал четырехшаговую процедуру подготовки 3D-печати балки как основы любого строительства.

1. Заданный вид балки (рис. 16).

Рис. 16. Модульная модель арки и профиль вулкана Везувий — как основа дизайна пролета моста

2. Переменные высоты поперечного сечения.

3. Разбиение балки на сегменты.

4. Оптимизация топологии и конфигурации арматуры.

А также он сформулировал требования к материалу из бетона:

1. Свежеприготовленный: применимость — возможность смешивать и подавать насосом в течение требуемого промежутка времени; возможность экструдирования — поддержание непрерывного потока материала; пригодность к строительству — не «плывет» и выдерживает нагрузку в несколько слоев после экструзии;

2. Затвердевший: анизотропия — механические свойства зависят от направления печати и размеров поперечного сечения.

В примере построения пешеходного моста за основу взята модель арки «Везувий» (рис. 16) по аналогии с природным профилем.

Оптимизация проводилась по следующим параметрам:

    минимальный вес при минимальном прогибе при полной нагрузке;
  •  напряжение на сжатие;
  •  количество сегментов;
  •  толщина слоя бетона при построении;
  •  конфигурация усиления металлическими стержнями;
  •  взаимное влияние крепления сегментов друг на друга;
  •  экономия бетона, времени и стоимости.

Элемент балки и балка в сборе показаны на рис. 17, 18.

Рис. 17. Сегмент арки моста (время построения 10 минут)

Рис. 18. Арка моста в сборе с металлическими усилениями

Рис. 19. Вклад в конечную стоимость построения с использованием опалубки

Следует отметить, что если первые попытки роботизации в строительстве (Япония, 1980-е) были направлены на автоматизацию или замену ручного труда, то нынешняя ситуация с внедрением роботов предполагает их использование архитекторами для создания сложных нестандартных конструкций из бетона как основного строительного материала. Из диаграммы (рис. 19) видно, что при традиционном способе более 58 % стоимости построения приходится на опалубку и работы по ее установке и снятию.

Материалы

В качестве расходных материалов для строительных 3D-принтеров можно использовать готовые сертифицированные смеси (рис. 20) промышленного производства, или готовить самостоятельно на основе доступных компонентов, или использовать местные строительные материалы типа песка или вулканических пористых пород.

Рис. 20. Сертифицированные строительные смеси для 3D-принтеров (РФ)

После специальной обработки и использования специальных добавок можно получить недорогие строительные материалы для 3D-печати применительно к региону, где планируется использовать 3D-принтер. Это особенно актуально для реализации грандиозных проектов по ликвидации трущоб в мегаполисах Латинской Америки, Индии и др. Рабочим материалом для строительных 3D-принтеров служат следующие материалы: цемент (портландцемент), песок (двуокись кремния, оливин, хромит, циркон, глинозем, муллит, кварцевое стекло, шамот), гипс, модифицирующие добавки, пластификаторы, антизамерзающие добавки, фиброволокна, ускорители (замедлители) отвердения и вода.

Основной строительный материал — армированный бетон. Он хорошо работает как на растяжение, так и на сжатие, при этом имеет низкую стоимость и широко распространен. У него давняя история в архитектуре, связанная с именами Le Corbusier, Eero Saarinen или Pierluigi Nervi. К сожалению, использование традиционной опалубки при строительстве объектов со сложной геометрией составляет до 75 % стоимости строительства. И чаще всего эта опалубка одноразовая.

Геополимерные смеси для экологически чистого бетона были разработаны компанией Renca, основанной предпринимателями из Челябинска Андреем и Мариной Дудниковыми. Геополимерная технология была открыта французским химиком Джозефом Давидовичем в 1978 году и сейчас продолжает изучаться в созданном им же Институте геополимеров (Institut Géopolymère). Из-за своей структуры геополимеры устойчивы к огню, а также ко многим растворителям и агрессивным средам. Благодаря этим качествам они часто применяются в сфере строительства. Например, в 2014 году компания Wagners построила из геополимерного бетона аэропорт в городе Брисбен (Австралия), а затем создала геополимерные плиты-перекрытия для Квинслендского университета. Кроме того, геополимеры можно использовать для восстановления подземных коммуникаций: американская компания Milliken при помощи роботов разбрызгивает геополимерную пену GeoSpray внутри старых сточных труб, таким образом восстанавливая их и защищая от внешних воздействий.

По сравнению с обычным (портландцементным) бетоном геополимерный бетон более экологичен: он не требует использования ископаемых ресурсов, во время его производства затрачивается в 10 раз меньше электроэнергии и выделяется на 90 % меньше углекислого газа. Кроме того, геополимерный бетон устойчив к огню, кислотам и обладает хорошей водостойкостью. По словам основателей «Геобетона», изготовление смеси для 3D-печати на базе портландцемента с аналогичными характеристиками обходится на 30–40 % дороже.

Материал на основе лигнина — искусственная древесина. Специалистами ООО «ЭкоФорм 3Д» разработан и запатентован способ получения композиций из натуральной древесины, лигнина, целлюлозы и композитов на их основе, а также совместно с ГК «Спецавиа» создана пилотная установка для активации древесины и приготовления формовочной массы и разработана технологическая линия (оборудование и технология) для получения из древесного сырья различных изделий строительного назначения и мебели.

Технологическая линия включает в себя малоформатный мобильный принтер марки SD-2020, разработанный и изготовленный ООО «Спецавиа», позволяющий осуществлять 3D-печать изделий строительного назначения и мебели (размер рабочей зоны 2,5×1,6×0,8 м). Принтер смонтирован на базе штатного прицепа к легковому автомобилю. Загрузку и разгрузку принтера (вес 520 кг) легко может сделать один человек при помощи лебедки, входящей в комплектацию прицепа. Принтер оснащен мощными приводами, позволяющими быстро и точно перемещать печатающую головку с накопителем до 32 литров.

Искусственная древесина — это термопластичный композиционный материал на основе натурального лигнина, выделенного запатентованным способом гидротермомеханической (кавитационной) обработки древесины без применения химических реагентов. Исходным материалом для переработки может служить нетоварная древесина (ветки, листья, опилки и др.).

Строительная смесь для печати cодержит зернистый материал с размером зерна более 0,5 мм от 10 до 60 % массы и дисперсный материал с размером зерна менее 0,1 мм от 40 до 90 % массы. Смесь предварительно приготавливают из двух или нескольких компонентов и смешивают до получения однородной массы. Не исключается вариант ее приготовления непосредственно в печатающей головке.

В качестве жидкости используют воду с добавками пластификаторов, фиброволокон и ускорителей (замедлителей) отвердевания, а полученное изделие выдерживают не менее 2 часов с последующей естественной или принудительной сушкой. Дополнительно в смесь можно вводить наполнители, пластификаторы, антизамерзающие добавки, связующие материалы.

Общие положения работы с материалами

Выбор компонентов строительной смеси определяется условиями эксплуатации строительных конструкций и необходимостью получения требуемых физико-механических свойств изделий: плотности, прочности, термостойкости, теплопроводности, устойчивости к механическим воздействиям в условиях значительного градиента температур и т. п.

Размер фракции определяет толщину и ширину слоя смеси, наносимого экструдером. Предпочтительно иметь толщину слоя от 5 до 50 мм. Подбирая гранулометрический состав смеси, изменяя размеры зерен отдельных компонентов, можно добиться необходимых свойств готового изделия.

Смешивание производят в растворных мешалках или специальных станциях до получения однородной массы. В процессе смешения возможно получение более предпочтительного гранулометрического состава порошкообразного материала в результате дополнительного измельчения.

Подача готового раствора в печатающую головку может производиться вручную и автоматизированным методом.

Выбор связующего материала зависит от выбора основных компонентов и добавок. Количество связующих материалов определяется необходимостью обеспечения достаточной прочности получаемого изделия.

Дополнительно могут вводиться пластифицирующие добавки в количестве менее 3%, благодаря чему при меньшем содержании влаги получается необходимая плотная структура с меньшей пористостью и усадкой. Количественное содержание указанных добавок подобрано экспериментальным путем для получения необходимой плотной структуры путем снижения межзеренного трения при уплотнении посредством экструдирования или вибрации. В качестве указанных добавок предлагается использовать, например, кварцевую пыль, оливин, полифосфат натрия, кальцинированную соду и др. Вводить данные добавки можно как в сухом (при смешении компонентов), так и жидком виде (в том числе с раствором солей магния).

Возможности и технические решения. Перспективы АМ в строительстве

Ограничения связаны с отсутствием нормативной базы для использования АM-технологий в строительстве. Поэтому сейчас в большинстве стран разрешено строительство домов не выше второго этажа. Хотя в Дубае, например, планируется до 25 % жилья, в том числе высотного, строить с применением АМ-технологий к 2030 г.

В РФ: конструкционный бетон для строительства высотных зданий по нормативам содержит не менее 20% портландцемента. При использовании АM-технологий это требование выполняется, поскольку материал для принтера нужен только для печати несъемной опалубки при построении многокамерных стен. Одна из камер выполняет функцию армопояса, куда укладывается арматура и заливается затем товарным бетоном нужной марки.

Перспективы АМ можно видеть в новых материалах, таких как самовосстанавливающийся бетон (залечивание трещин), аэрогель (сверхизолирующий материал, 99,98 % воздух), наноматериалы (сверхпрочные, сверхлегкие материалы для замены стальной арматуры), а также в новых подходах к строительству, таких как трехмерная печать и предварительно собранные модули. Все это может снизить затраты, ускорить строительство и повысить качество и безопасность.

Наибольшие перспективы просматриваются в сочетании роботизированных комплексов с традиционными технологиями строительства.

Н.М. Максимов, ООО «Ника-Рус»

Литература

1. www.bkhoshnevis.com
2. www.contourcrafting.com
3. I. Klotz, M. Horman, M. Bodenschatz. A lean modelling protocol for evaluating green project delivery. Lean Constr. J. 3 (1) (2007) 1–18.
4. H. Nasir, H. Ahmed, C. Hass, P. M. Goodrum, An analysis of construction productivity differences between Canada and the United States. Constr. Manag. Econ. 32 (6) (2014) 595–607.
5. M. Molitch-hou, Branch technology is 3D printing the future of construction one wall at a time. https://3dprintingindustry.com/news/branch-technology-is-3d-printing-the-future-of-construction-one-wall-at-a-time-54149/
6. www.branch.technology
7. N. Hack, W. V. Lauer, F. Gramazio, and M. Kohler. Mesh Mould: Differentiation for Enhanced Performance. Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on ComputerAided Architectural Design Research in Asia (CAADRIA 2014)/Kyoto 14–16 May 2014, pp. 139–148, 2014.
8. Norman Hacka, Timothy Wanglerb, Jaime Mata-Falcónc, Kathrin Dörflera, Nitish Kumard, Alexander Nikolas Walzera, Konrad Grasere, Lex Reiterb, Heinz Richnerb, Jonas Buchlid, Walter Kaufmannc, Robert J. Flattb, Fabio Gramazioa, Matthias Kohlera Mesh mould:
an on site, robotically fabricated, functional formwork
9. https://hightech.fm/2017/06/17/geobeton

Статья опубликована в журнале «Аддитивные технологии» № 4-2017.

Наши новости в telegram канале: t.me/Techart_CaseStudy
Компании:
Apis Cor
RENCA
АМТ
Комментариев пока нет

добавить сообщение

?

Хотите
быть в курсе

события 3D-печати

У ВАШЕЙ КОМПАНИИ ЕСТЬ ЗАДАЧИ В СФЕРЕ 3D-ТЕХНОЛОГИЙ? МЫ ГОТОВЫ ПОМОЧЬ В ИХ РЕАЛИЗАЦИИ

Агентство 3Dpulse.ru и консалтинговая группа «Текарт» предлагают сотрудничество в самых разных областях: от поиска потенциальных партнеров до рекомендаций по стратегическому планированию.
Отправьте заявку и получите консультацию на электронную почту.

У ВАШЕЙ КОМПАНИИ ЕСТЬ ЗАДАЧИ В СФЕРЕ 3D-ТЕХНОЛОГИЙ?
МЫ ГОТОВЫ ПОМОЧЬ В ИХ РЕАЛИЗАЦИИ

Агентство 3Dpulse.ru и консалтинговая группа «Текарт» предлагают сотрудничество в самых разных областях: от поиска потенциальных партнеров до рекомендаций по стратегическому планированию.

Отправьте заявку и получите консультацию на электронную почту.